RAG vs. ãã¡ã€ã³ãã¥ãŒãã³ã°ïŒããªãã«åã£ãLLMæé©åæŠç¥ã¯ïŒ
LLMã®éçãè¶ ããæé«ã®ããã©ãŒãã³ã¹ãåŒãåºãRAGãšãã¡ã€ã³ãã¥ãŒãã³ã°ïŒäž¡æè¡ã®éããšé·æã»çæããããŠèªåã«åã£ãæé©åæŠç¥ãéžã¶æ¹æ³ã«ã€ããŠè§£èª¬ããŸãã
ChatGPTã®ãããªå€§èŠæš¡èšèªã¢ãã«ïŒLLMïŒã®ç»å Žã¯ãç§ãã¡ã«é©ãã¹ãå¯èœæ§ã瀺ããŠãããŸãããããããLLMã¯äžèœã§ã¯ãããŸãããææ°æ å ±ãäžè¶³ããŠããããç¹å®ã®å°éåéã«å¯Ÿããç¥èãæµ ãã£ããããŠãäžæ£ç¢ºãªçããåºãããšããããŸãããŸãã«ãã®ç¹ã§ãLLMã®éçãè£ããããã©ãŒãã³ã¹ãæå€§åããããã®2ã€ã®äž»èŠæè¡ãRAGïŒæ€çŽ¢æ¡åŒµçæïŒãšãã¡ã€ã³ãã¥ãŒãã³ã°ãç»å ŽããŸãã
RAGãšãã¡ã€ã³ãã¥ãŒãã³ã°ã¯ãã°ãã°äžç·ã«èšåãããŸãããå®ã¯ããããç°ãªãç®çãšæ¹åŒãæã€æè¡ã§ããRAGã¯LLMå€éšã®ææ°æ å ±ããæ€çŽ¢ãããŠåçã®æ ¹æ ãšããŠæŽ»çšããã¢ãŒããã¯ãã£ã«è¿ãããã¡ã€ã³ãã¥ãŒãã³ã°ã¯ç¹å®ã®ããŒã¿ã»ãããLLMã«è¿œå ã§åŠç¿ãããŠã¢ãã«èªäœããå€åããããèšç·Žæ¹åŒã§ããããã¯ãæã¡èŸŒã¿å¯ã®è©ŠéšïŒRAGïŒãšãç¹å®ã®ç§ç®ãæ·±ãæãäžããéäžåŠç¿ïŒãã¡ã€ã³ãã¥ãŒãã³ã°ïŒã«äŸããããšãã§ããŸãã
ãã®èšäºã§ã¯ãRAGãšãã¡ã€ã³ãã¥ãŒãã³ã°ã®åäœåçããããããã®é·æã»çæããããŠãã€ã©ã®æè¡ã䜿ãã¹ãããæç¢ºã«æ¯èŒã»åæããŸããããã«ãäž¡æè¡ãçµã¿åãããŠçžä¹å¹æãçã¿åºãæ¹æ³ãŸã§æ¢ããããªãã®ãããžã§ã¯ãã«æé©ãªLLMæé©åæŠç¥ãèŠã€ããæå©ããããŸãã
æ€çŽ¢ãéããŠè³¢ããªãLLMïŒRAGïŒæ€çŽ¢æ¡åŒµçæïŒ
RAGïŒRetrieval-Augmented GenerationïŒã¯ããã®åã®éããæ€çŽ¢ïŒRetrievalïŒããéããŠLLMã®åççæããæ¡åŒµïŒAugmentedïŒãããæè¡ã§ããLLMãæ¬æ¥æã£ãŠããç¥èã ãã«äŸåããã®ã§ã¯ãªãã質åã«é¢é£ããæ å ±ãå€éšã®ããŒã¿ãœãŒã¹ãããªã¢ã«ã¿ã€ã ã§ååŸããåçã®æ ¹æ ãšããæ¹åŒã§ãã
RAGã¯ã©ã®ããã«æ©èœããã®ãïŒ
RAGã®åäœããã»ã¹ã¯ã倧ãã3ã€ã®ã¹ãããã«åããããšãã§ããŸãã
- å€éšããŒã¿ã®æ€çŽ¢ïŒRetrievalïŒïŒãŠãŒã¶ãŒã質åããããšãRAGã·ã¹ãã ã¯ãŸããäºåã«æ§ç¯ãããå€éšã®ç¥èãªããžããªããã質åã«æãé¢é£æ§ã®é«ãããã¥ã¡ã³ããèŠã€ãåºããŸãããã®ç¥èãªããžããªã¯ãéåžžã**ãã¯ãã«ããŒã¿ããŒã¹ïŒVector DBïŒ**ãšããŠå®è£ ãããŸãã
- åã蟌ã¿ïŒEmbeddingïŒïŒããã¥ã¡ã³ãããã¯ãã«DBã«ä¿åãããããåããã¥ã¡ã³ãã¯ãåã蟌ã¿ããšããããã»ã¹ãçµãŠãæ°å€ã§æ§æããããã¯ãã«ïŒVectorïŒåœ¢åŒã«å€æãããŸãããŠãŒã¶ãŒã®è³ªåãåæ§ã®æ¹æ³ã§ãã¯ãã«åããããã¯ãã«DBå ã§æå³çã«æãé¡äŒŒããïŒè¿ãïŒããã¥ã¡ã³ããã¯ãã«ãå¹ççã«èŠã€ãåºãããšãã§ããŸãã
- åççæïŒGenerationïŒïŒæ€çŽ¢ãããé¢é£æ§ã®é«ãããã¥ã¡ã³ãã¯ããŠãŒã¶ãŒã®å ã®è³ªåãšãšãã«ããã³ããïŒPromptïŒåœ¢åŒã§LLMã«æž¡ãããŸããLLMã¯ããã®è¿œå æ å ±ã«åºã¥ããŠãã¯ããã«æ£ç¢ºã§æ ¹æ ã®ããåçãçæããŸãã
ãã®æ¹åŒã®ãããã§ãRAGã¯LLMã®æå€§ã®æ¬ ç¹ã®äžã€ã§ããããã«ã·ããŒã·ã§ã³ïŒå¹»èŠïŒããã€ãŸãäºå®ã§ã¯ãªãå 容ããã£ãšããããäœãåºãåé¡ã广çã«é²ãããšãã§ããŸãã
RAGã®é·æ
- ææ°æ å ±ã®åæ ïŒå€éšããŒã¿ããŒã¹ã¯ç¶ç¶çã«æŽæ°ã§ãããããLLMã®åŠç¿æç¹ä»¥éã«çºçããææ°æ å ±ã倿Žãããå 容ããåçã«å³åº§ã«åæ ã§ããŸããäŸãã°ã仿¥ã®å€©æ°ãææ°ãã¥ãŒã¹ã®èŠçŽãšãã£ããµãŒãã¹ã«éåžžã«åœ¹ç«ã¡ãŸããã
- ãã«ã·ããŒã·ã§ã³ã®é²æ¢ïŒãã¹ãŠã®åçã¯æ€çŽ¢ãããå®éã®ããã¥ã¡ã³ããæ ¹æ ã«çæããããããLLMãä»»æã«æ å ±ãæé ããå¯èœæ§ãå€§å¹ ã«æžå°ããŸãããŸãããŠãŒã¶ãŒã«æ å ±ã®åºæã䜵ããŠæäŸããããšã§ãåçã®ä¿¡é Œæ§ãé«ããããšãã§ããŸãã
- ã³ã¹ãå¹çïŒã¢ãã«å šäœãååŠç¿ããããã¡ã€ã³ãã¥ãŒãã³ã°ã«æ¯ã¹ãæ¯èŒçã³ã¹ããäœããè¿ éã§ããæ°ããæ å ±ã远å ããéã«ã¯ãã¯ãã«DBãæŽæ°ããã ãã§æžããããäŒçµ±çãªæ©æ¢°åŠç¿ã®åŠç¿ããã»ã¹ã¯å¿ èŠãããŸããã
- å¹ åºãç¥èç¯å²ïŒèšå€§ãªéã®å€éšããã¥ã¡ã³ããç¥èããŒã¹ãšããŠæŽ»çšãããããLLMãåŠç¿ããŠããªãç¹å®ã®ãã¡ã€ã³ãéåžžã«è©³çްãªå 容ã«ã€ããŠãåçã§ããŸãã
RAGã®çæ
- æ€çŽ¢å質ãžã®äŸåïŒåçã®å質ã¯ãå®å šã«æ€çŽ¢ãããããã¥ã¡ã³ãã®å質ã«å·Šå³ãããŸããããé¢é£æ§ã®ãªãããã¥ã¡ã³ããæ€çŽ¢ãããããæ€çŽ¢ã·ã¹ãã ã®æ§èœãäœãã£ãããããšãããã£ãŠåçã®è³ªãäœäžããå¯èœæ§ããããŸãã
- å¿çé床ã®é å»¶ïŒãŠãŒã¶ãŒã®è³ªåããããã³ã«ãªã¢ã«ã¿ã€ã ã§ããã¥ã¡ã³ããæ€çŽ¢ããããã»ã¹ã远å ãããããããã¡ã€ã³ãã¥ãŒãã³ã°ãããã¢ãã«ã«æ¯ã¹ãŠå¿çé床ãå€å°é ããªãå¯èœæ§ããããŸãã
- è€éãªã·ã¹ãã æ§æïŒå¹æçãªRAGã·ã¹ãã ãæ§ç¯ããããã«ã¯ããã¯ãã«DBãåã蟌ã¿ã¢ãã«ãæ€çŽ¢ã¢ã«ãŽãªãºã ãªã©ã倿§ãªæ§æèŠçŽ ãçè§£ããèšèšããå¿ èŠããããšããè€éãããããŸãã
ç¹å®åéã®å°éå®¶ãžãšé²åããïŒãã¡ã€ã³ãã¥ãŒãã³ã°ïŒFine-tuningïŒ
ãã¡ã€ã³ãã¥ãŒãã³ã°ã¯ããã§ã«åŠç¿ãå®äºããäºååŠç¿æžã¿ã¢ãã«ïŒPre-trained ModelïŒããç¹å®ã®ãã¡ã€ã³ãã¿ã¹ã¯ã«ç¹åããå°èŠæš¡ãªããŒã¿ã»ããã§è¿œå åŠç¿ãããããã»ã¹ã§ããLLMãç¹å®åéã®ãå°éå®¶ãã«ããäœæ¥ã ãšèãããšåãããããã§ãããã
ãã¡ã€ã³ãã¥ãŒãã³ã°ã¯ã©ã®ããã«æ©èœããã®ãïŒ
äŸãã°ãæ³åŸåéã®ãã£ããããããäœæããããšããŸããäžè¬çãªLLMã¯åºæ¬çãªæ³åŸçšèªã¯ç¥ã£ãŠããŸãããè€éãªå€äŸãè§£éããããå°éçãªæ³çå©èšãæäŸãããããã®ã¯å°é£ã§ãããã®ãšããèšå€§ãªéã®æ³åŸææžãå€äŸãé¢é£æžç±ãªã©ã®ããŒã¿ãæºåããæ¢åã®LLMã远å ã§åŠç¿ããããšãã¢ãã«ã¯æ³åŸåéã®å°éç¥èããã¥ã¢ã³ã¹ãç¹æã®æäœãªã©ãå åšåãããŸãã
ãã®ããã»ã¹ãéããŠããã¡ã€ã³ãã¥ãŒãã³ã°ãããã¢ãã«ã¯ãŸãã§æ³åŸã®å°éå®¶ã®ããã«èããåçã§ããããã«ãªããã¢ãã«ã®éã¿ïŒweightsïŒãæŽæ°ãããæ°ããç¥èãšã¹ã¿ã€ã«ãã¢ãã«èªäœã«çµ±åãããŸãã
ãã¡ã€ã³ãã¥ãŒãã³ã°ã®é·æ
- é«ããã¡ã€ã³å°éæ§ïŒç¹å®åéã®ããŒã¿ãæ·±ãåŠç¿ããããããã®åéã«å¯Ÿããé«ãã¬ãã«ã®ç解床ãæã€ããã«ãªããŸããããã¯åã«æ å ±ãçŸ åããã ãã§ãªããããŒã¿ã«å åšãããã¿ãŒã³ãè«çãã¹ã¿ã€ã«ãŸã§åŠç¿ããããšãæå³ããŸãã
- éãå¿çé床ïŒäžåºŠåŠç¿ãå®äºããã°ãRAGã®ããã«å€éšããŒã¿ãæ€çŽ¢ããå¿ èŠãªããã¢ãã«å éšã®ç¥èãçŽæ¥æŽ»çšããŠåçãçæããŸãããã®ãããå¿çé床ãéåžžã«éãã§ãã
- äžè²«ããã¹ã¿ã€ã«ãšããŒã³ã®ç¶æïŒãã©ã³ãã®ç¹å®ã®è©±ãæ¹ããã£ã©ã¯ã¿ãŒã®åºæã®å£èª¿ãå°éçãªå ±åæžã®åœ¢åŒãªã©ãäžè²«ããã¢ãŠããããã¹ã¿ã€ã«ãç¶æããã®ã«éåžžã«å¹æçã§ããäŸãã°ãã«ã¹ã¿ããŒãµãŒãã¹ã®AIãåžžã«èŠªåã§äžè²«ããããŒã³ã§å¿çããããã«äœãããšãã§ããŸãã
ãã¡ã€ã³ãã¥ãŒãã³ã°ã®çæ
- é«ãã³ã¹ããšæéïŒã¢ãã«ã远å åŠç¿ãããããã»ã¹ã¯ãããªãã®éã®é«å質ãªããŒã¿ãšé«ãã³ã³ãã¥ãŒãã£ã³ã°ãªãœãŒã¹ãå¿ èŠãšããŸããããã¯å€ãã®ã³ã¹ããšæéãæ¶è²»ããäœæ¥ã§ãã
- æ å ±æŽæ°ã®é£ããïŒäžåºŠåŠç¿ãããæ å ±ã¯ã¢ãã«å éšã«åºå®ããããããæ°ããæ å ±ãåæ ãããã«ã¯ã¢ãã«ãå床åŠç¿ãããå¿ èŠããããŸããããã¯ãRAGã®ããã«ãªã¢ã«ã¿ã€ã ã§æ å ±ãæŽæ°ããã®ãé£ããããšãæå³ããŸãã
- äŸç¶ãšããŠæ®ããã«ã·ããŒã·ã§ã³ã®ãªã¹ã¯ïŒç¹å®ãã¡ã€ã³ã®ç¥èã远å åŠç¿ããããšã§ãã«ã·ããŒã·ã§ã³ãæžããããšã¯ã§ããŸãããåŠç¿ããŠããªãæªç¥ã®å ¥åã«å¯ŸããŠã¯ãäŸç¶ãšããŠãã«ã·ããŒã·ã§ã³ãçºçããå¯èœæ§ããããŸãããŸããRAGãšã¯ç°ãªããæ å ±ã®åºæãæäŸããããšãå°é£ã§ãã
- å°éç¥èã®èŠæ±ïŒæåãããã¡ã€ã³ãã¥ãŒãã³ã°ã®ããã«ã¯ãæ©æ¢°åŠç¿ã«é¢ããæ·±ãçè§£ãå¿ èŠã§ããããã¢ãã«ããªãããã®ãããªäºæãã¬åé¡ã«çŽé¢ããããšããããŸãã
RAG vs. ãã¡ã€ã³ãã¥ãŒãã³ã°ïŒäž»èŠãªéãã®èŠçŽ
RAGãšãã¡ã€ã³ãã¥ãŒãã³ã°ã®æãæ ¹æ¬çãªéãã¯ããç¥èã®æŽ»çšæ¹æ³ãã«ãããŸããRAGã¯æ å ±ããæ¢ããŠãåçããæ¹åŒã§ããããã¡ã€ã³ãã¥ãŒãã³ã°ã¯æ å ±ããèšæ¶ããŠãåçããæ¹åŒã§ãã
| åºå | RAGïŒæ€çŽ¢æ¡åŒµçæïŒ | ãã¡ã€ã³ãã¥ãŒãã³ã° |
|---|---|---|
| æ å ±æº | å€éšã®ç¥èããŒã¿ããŒã¹ïŒãªã¢ã«ã¿ã€ã æ€çŽ¢ïŒ | ã¢ãã«å éšã®åŠç¿æžã¿ç¥è |
| ããŒã¿ç¹æ§ | åç(Dynamic)ïŒãªã¢ã«ã¿ã€ã æŽæ°ã容æ | éç(Static)ïŒåŠç¿æç¹ã§åºå® |
| äž»ãªç®ç | **ç¥è(Knowledge)**ã®äŒéãææ°ã»æ£ç¢ºãªæ å ±æäŸ | **ã¹ã¿ã€ã«(Style)ããã³è¡å(Behavior)**ã®æš¡å£ãå°éæ§ã®å åšå |
| æ žå¿çãªäŸã | æã¡èŸŒã¿å¯ã®è©ŠéšïŒæ¢ããŠåçïŒ | éäžåŠç¿ïŒèšæ¶ããŠåçïŒ |
äºå ãè¿œãæ¹æ³ïŒRAGãšãã¡ã€ã³ãã¥ãŒãã³ã°ã®çµã¿åãã
ãããŸã§RAGãšãã¡ã€ã³ãã¥ãŒãã³ã°ãå¥ã ã®æè¡ãšããŠèŠãŠããŸããããæè¯ã®çµæãåŸãããã®æãçæ³çãªæ¹æ³ã¯ãäž¡æè¡ãçµã¿åãããŠäœ¿çšããããšã§ããããããã®é·æã掻ãããçæãè£ãçžä¹å¹æãçã¿åºãããšãã§ããããã§ãã
ãã¡ã€ã³ãã¥ãŒãã³ã°ãéããŠLLMã«ç¹å®ãã¡ã€ã³ã®æ·±ãç¥èãšäžè²«ããã¹ã¿ã€ã«ãå åšåãããRAGãéããŠãªã¢ã«ã¿ã€ã ã§å€åããææ°æ å ±ãè£åŒ·ããæ¹åŒã§ãã
ãã€ããªããæ¹åŒã®é©çšäºäŸ
-
éèåæAI:
- ãã¡ã€ã³ãã¥ãŒãã³ã°ïŒéå»ã®è²¡å諞衚ãæè³ã¬ããŒããéèçšèªãªã©ãåŠç¿ãããéèåéã®å°éç¥èãåæãã¬ãŒã ã¯ãŒã¯ãã¬ããŒãã¹ã¿ã€ã«ãå åšåãããŸãã
- RAGïŒãªã¢ã«ã¿ã€ã ã®æ ªäŸ¡ãææ°ã®çµæžææšãæ¥çãã¥ãŒã¹ãªã©ãå€éšããæ€çŽ¢ããææ°ã®åžå Žç¶æ³ãåæ ããæ£ç¢ºãªåæãæäŸããŸãã
-
ã«ã¹ã¿ããŒãµãŒãã¹ã»ãã£ããããã:
- ãã¡ã€ã³ãã¥ãŒãã³ã°ïŒãã©ã³ãã®ã¬ã€ãã©ã€ã³ã«åãããŠã芪åã§äžè²«ããè©±ãæ¹ãšããŒã³ãåŠç¿ããŸãã
- RAGïŒAPI飿ºãéããŠã顧客ã®ãªã¢ã«ã¿ã€ã ã®æ³šæç¶æ³ãåšåº«ç¶æ³ãé éæ å ±ãªã©ãç §äŒããæ£ç¢ºãªæ å ±ãæäŸããŸãã
ãã®ããã«ããã€ããªããæ¹åŒã¯å°éæ§ãšææ°æ§ãåæã«ç¢ºä¿ããäžæ®µéé«ãã¬ãã«ã®AIãµãŒãã¹ãæ§ç¯ããããšãå¯èœã«ããŸãã
è³¢æãªéžæã®ããã®ã¬ã€ã
RAGããã¡ã€ã³ãã¥ãŒãã³ã°ããããŠãã€ããªããæ¹åŒãŸã§èŠãŠããŸãããã§ã¯ãããªãã®ãããžã§ã¯ãã«ã¯ã©ã®æ¹åŒãéžæãã¹ãã§ããããïŒæ£è§£ã¯ãããµãŒãã¹ã®ç®çãšããŒã¿ç°å¢ãã«ãã£ãŠç°ãªããŸãã
- ãææ°æ
å ±ãšæ£ç¢ºæ§ãæãéèŠãªãïŒã â RAGããå§ããŸãããã
- ãã¥ãŒã¹ã®èŠçŽãå€©æ°æ å ±ã瀟å èŠå®ã®Q&Aã®ããã«ãæ å ±ãé »ç¹ã«å€ãã£ãããåçã®æ ¹æ æç€ºãéèŠã ã£ãããããµãŒãã¹ã«é©ããŠããŸããOpenAIã®ãã¡ã€ã³ãã¥ãŒãã³ã°ã¬ã€ãææžã§ãããã¡ã€ã³ãã¥ãŒãã³ã°ã詊ãåã«ãããã³ãããšã³ãžãã¢ãªã³ã°ãRAGãªã©ãããŸããŸãªæ¹æ³ããŸã詊ãããšãæšå¥šããŠããŸãã
- ãç¹å®ã®ã¹ã¿ã€ã«ãå°éæ§ãæš¡å£ããå¿
èŠããããªãïŒã â ãã¡ã€ã³ãã¥ãŒãã³ã°ãæ€èšããŸãããã
- ç¹å®ã®äœå®¶ã®æäœãç䌌ãã©ã€ãã£ã³ã°AIããã©ã³ãåºæã®ããŒã³ãç¶æããå¿ èŠãããããŒã±ãã£ã³ã°ã³ããŒã©ã€ã¿ãŒãåºå®ãããæè¡ææžããŒã¹ã®ãã£ããããããªã©ã«é©ããŠããŸãã
- ãæé«ã®ããã©ãŒãã³ã¹ãæ±ãããªãïŒã â ãã€ããªããæ¹åŒãç®æããŸãããã
- æ·±ãå°éç¥èãšãªã¢ã«ã¿ã€ã ã®æ£ç¢ºæ§ã®äž¡æ¹ãèŠæ±ãããé«åºŠãªãµãŒãã¹ã§ããã°ããã¡ã€ã³ãã¥ãŒãã³ã°ã§åºç€ãåºããRAGã§ç¿Œãåºãããã€ããªããæ¹åŒãæé©ãªéžæãšãªãã§ãããã
LLMã®çºå±ã¯ãŸã å§ãŸã£ãã°ããã§ãããRAGããã¡ã€ã³ãã¥ãŒãã³ã°ã®ãããªæé©åæè¡ã¯ä»åŸããã«éèŠã«ãªãã§ãããããããäºã€ã®æè¡ã®åçãšéããæç¢ºã«çè§£ããããšã¯ãå€åããæè¡ç°å¢ã®äžã§ç«¶äºåãç¶æãã驿°çãªãµãŒãã¹ãçã¿åºããŠããããã®çŽ æŽãããç¬¬äžæ©ãšãªãã¯ãã§ãã